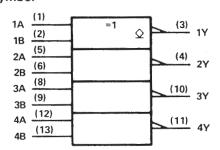
- · Can Be Used as a 4-Bit Digital Comparator
- Input Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL Circuits

#### **FUNCTION TABLE**

| INP | UTS | ОUТРUТ |
|-----|-----|--------|
| Α   | В   | Y      |
| L   | L   | н      |
| L   | Н   | L      |
| н   | L.  | L      |
| н   | Н   | н      |

H = high level, L = low level


#### description

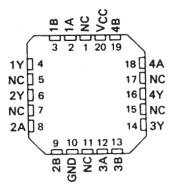
The 'LS266 is comprised of four independent 2-input exclusive-NOR gates with open-collector outputs. The open-collector outputs permit tying outputs together for multiple-bit comparisons.

#### logic symbol (each gate)



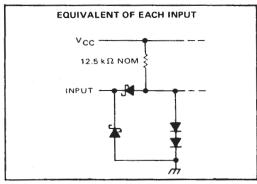
## logic symbol<sup>†</sup>

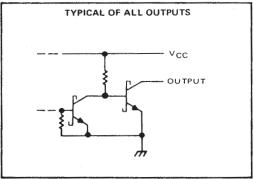



positive logic:  $Y = \overline{A \oplus B} = AB + \overline{AB}$ 

Pin numbers shown are for D, J, N, and W packages.

#### SN54LS266 . . . J OR W PACKAGE SN74LS266 . . . D OR N PACKAGE (TOP VIEW)


1A 1 14 VCC
1B 2 13 4B
1Y 3 12 4A
2Y 4 11 4Y
2A 5 10 3Y
2B 6 9 3B
GND 7 8 3A


# SN54LS266 ... FK PACKAGE (TOP VIEW)



NC - No internal connection

#### schematic of inputs and outputs







<sup>&</sup>lt;sup>†</sup>This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

# SN54LS266, SN74LS266 QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES WITH OPEN-COLLECTOR OUTPUTS

SDLS151 – DECEMBER 1972 – REVISED MARCH 1988

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1) .    |           |  |    |  |  | <br> |  |  |  |  |    |     |      | 7 ١   | V |
|---------------------------------------|-----------|--|----|--|--|------|--|--|--|--|----|-----|------|-------|---|
| Input voltage                         |           |  |    |  |  |      |  |  |  |  |    |     |      | 7 ٧   | V |
| Operating free-air temperature range: | SN54LS266 |  | ٠. |  |  |      |  |  |  |  | -5 | 5°C | c to | 125°  | С |
|                                       | SN74LS266 |  |    |  |  |      |  |  |  |  |    | 0°  | C t  | o 70° | С |
| Storage temperature range             |           |  |    |  |  |      |  |  |  |  |    |     |      |       |   |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                                | SI  | N54LS2 | 66  | SI   | UNIT |      |     |
|------------------------------------------------|-----|--------|-----|------|------|------|-----|
|                                                | MIN | NOM    | MAX | MIN  | NOM  | MAX  | ONT |
| Supply voltage, V <sub>CC</sub>                | 4.5 | 5      | 5.5 | 4.75 | 5    | 5.25 | ٧   |
| High-level output voltage, VOH                 |     |        | 5.5 |      |      | 5.5  | ٧   |
| Low-level output current, IOL                  |     |        | 4   |      |      | 8    | mA  |
| Operating free-air temperature, T <sub>A</sub> | -55 |        | 125 | 0    |      | 70   | °C  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |                                        |                                                                  | SI                                                | N54LS2       | 66   | S    | UNIT |      |      |    |
|-----------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|--------------|------|------|------|------|------|----|
|           |                                        | TEST CON                                                         | MIN                                               | IIN TYP# MAX |      |      | TYP‡ | MAX  | ONT  |    |
| VIH       | High-level input voltage               |                                                                  |                                                   | 2            |      |      | 2    |      |      | ٧  |
| VIL       | Low-level input voltage                |                                                                  |                                                   |              |      | 0.7  |      |      | 0.8  | V  |
| VIK       | Input clamp voltage                    | V <sub>CC</sub> = MIN,                                           | I <sub>I</sub> = -18 mA                           |              |      | 1.5  |      |      | -1.5 | ٧  |
| ЮН        | High-level output current              | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> max, | V <sub>IH</sub> = 2 V,<br>V <sub>OH</sub> = 5.5 V |              |      | 100  |      |      | 100  | μА |
| VOL       | Low-level output voltage               | V <sub>CC</sub> ≈ MIN,<br>V <sub>IH</sub> = 2 V,                 | IOL = 4 mA                                        |              | 0.25 | 0.4  |      | 0.25 | 0.4  | V  |
| VOL       |                                        | VIL = VIL max                                                    | IOL = 8 mA                                        |              |      |      |      | 0.35 | 0.5  |    |
| - la      | Input current at maximum input voltage | V <sub>CC</sub> = MAX,                                           | V1 = 7 V                                          |              |      | 0.2  |      |      | 0.2  | mA |
| Чн        | High-level input current               | V <sub>CC</sub> = MAX,                                           | V <sub>1</sub> = 2.7 V                            |              |      | 40   |      |      | 40   | μА |
| IL        | Low-level input current                | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 0.4 V                            |              |      | -0.8 |      |      | -0.8 | mA |
| 1cc       | Supply current                         | V <sub>CC</sub> = MAX,                                           | See Note 2                                        |              | 8    | 13   |      | 8    | 13   | mA |

<sup>&</sup>lt;sup>1</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.  $^{\ddagger}$  All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25 C.

### switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER§       | FROM<br>(INPUT) | TEST COI         | MIN                                                            | TYP | MAX | UNIT |    |     |
|------------------|-----------------|------------------|----------------------------------------------------------------|-----|-----|------|----|-----|
| <sup>t</sup> PLH | A or B          | Other input low  | $C_L = 15 \mathrm{pF},$ $R_L = 2 \mathrm{k}\Omega,$ See Note 3 |     | 18  | 30   | ns |     |
| tPHL             | 1               | Other siput low  |                                                                |     |     | 18   | 30 | 113 |
| <sup>t</sup> PLH | A or B          | Other input high |                                                                |     |     | 18   | 30 | ns  |
| tpHL             | 1               | Other input high | 00011010                                                       |     | 18  | 30   |    |     |

<sup>§</sup>tpLH = propagation delay time, low-to-high-level output



NOTE 2: 1<sub>CC</sub> is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.