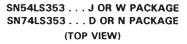
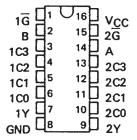
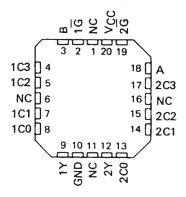
SN54LS353, SN74LS353 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS


SDLS163 - OCTOBER 1976 - REVISED MARCH 1988


- Inverting Versions of SN54LS253, SN74LS253
- Schottky-Diode-Clamped Transistors
- Permits Multiplexing from N lines to 1 line
- Performs Parallel-to-Serial Conversion
- Typical Average Propagation Delay Times:
 Data Input to Output . . . 12 ns
 Control Input to Output . . . 16 ns
 Select Input to Output . . . 21 ns
- Fully Compatible with most TTL Circuits
- Low Power Dissipation . . . 35 mW Typical (Enabled)
- Inverted Data

description


Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate output control inputs are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level.

SN54LS353 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

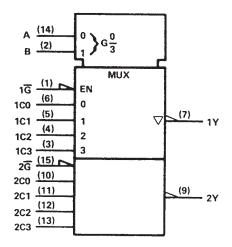
FUNCTION TABLE

ł	SELECT INPUTS		DATA	INPUTS	OUTPUT CONTROL	ОПТРИТ			
В	Α	CO	C1	C2	C3	G	Y		
X	X	X	Х	X	Х	Н	Z		
L	L	L	X	X	X	L	Н		
L	L	H	Х	X	X	L	L		
L	Н	×	L	X	X	L	Н		
L	Н	×	н	X	X	L	L		
Н	L	X	×	L	X	L	н		
H	L	X	X	Н	X	L	L		
Н	н	X	X	X	L	L.	Н		
Н	Н	X	X	X	Н	L	L		

Select inputs A and B are common to both sections.

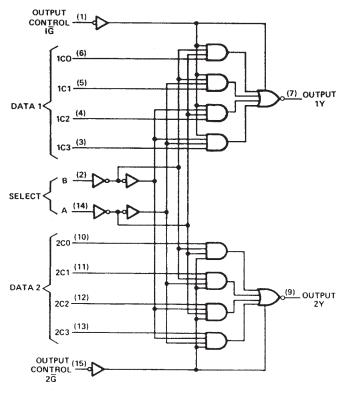
H = high level, L = low level, X = irrelevant, Z = high impedance (off)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

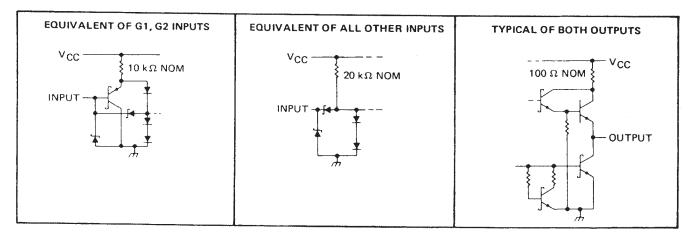

Supply voltage, VCC (see Note 1) .																					7 V	
Input voltage																					7 V	
Off-state output voltage		,																			5.5 V	
Operating free-air temperature range:	S	N5	34 L	_S	35	3											-	-55	s°(C to	125°C	,
	S	N7	41	LS	35	3													0	°C t	o 70°C	,
Storage temperature range																	_	-65	5°(C to	150°C	

NOTE 1: Voltage values are with respect to network ground terminal.

SDLS163 - OCTOBER 1976 - REVISED MARCH 1988


logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, J, N, and W packages.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematic of inputs and outputs

recommended operating conditions

		SI	N54LS3	53	S			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
v_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ГОН	High-level output current			1			- 2.6	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDIT	s	N54LS3	53	S				
FARAMETER	TEST CONDIT	IONS '	MIN	TYP‡	MAX	MIN	TYP\$	MAX	UNIT
VIK	$V_{CC} = MIN, I_{I} = -18 \text{ m/s}$	1			- 1.5			- 1.5	V
V _{ОН}	$V_{CC} = MIN$, $V_{IH} = 2 V$, $I_{OH} = MAX$	VIL = MAX,	2.4	3.4		2.4	3.1		٧
V _{OL}	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	V ₁ L = MAX	I _{OL} = 8 mA					0.35	0.5	1 *
loz	V _{CC} = MAX, V _{IH} = 2 V	V _O = 2.7 V			20			20	μА
loz	VCC = WAX, VIH = 2 V	V _O = 0.4 V			- 20			- 20	Ι μα
1	$V_{CC} = MAX$, $V_{I} = 7 V$				0.1			0.1	mA
IH	$V_{CC} = MAX$, $V_1 = 2.7 V$				20			20	μА
G1, G1	V _{CC} = MAX, V ₁ = 0.4 V	N = 0.4 N			- 0.2			- 0.2	
All other	VCC = WAX, V = 0,4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX		- 30		-130	- 30		- 130	mA
loo	V _{CC} = MAX, See Note 2	Condition A		7	12		7	12	
¹cc	VCC - WAX, See Note 2	Condition B		8.5	14		8.5	14	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with the outputs open under the following conditions:

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CON	NOITIONS	MIN TYP	MAX	UNIT
^t PLH	Data	Υ			11	25	
^t PHL	Data	1			13	20	ns
^t PLH	Select	· · · · · · · · · · · · · · · · · · ·	C _L = 15 pF,	$C_{L} = 15 \text{ pF}, \qquad R_{L} = 2 \text{ k}\Omega,$	20	45	
^t PHL	Select	Ť	See Note 3		21	32	ns
^t PZH	Output	Υ	7		11	23	
^t PZL	Control				15	23	ns
^t PHZ	Output	Y	C _L = 5 pF,	$R_L = 2 k\Omega$,	27	41	
^t PLZ	Control	Y	See Note 3		12	27	ns

 $¹_{tplh}$ = Propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

A. All inputs grounded.

B. Output control at 4.5 V, all inputs grounded.

tpHL = Propagation delay time, high-to-low-level output

tpzH = Output enable time to high level

tpzL = Output enable time to low level

tpHZ = Output disable time from high level

tpLZ = Output disable time from low level